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 INTRODUCTION  

1.1 Purpose 

The purpose of this report is to explain the methods adopted for the generation of future weather data 

relative to the cities identified in the proposal. The deliverable describes the sources of weather data 

projections, the methods implemented to bias correct the future weather data, and the generation of 

future weather data for building simulation.  

1.2 Structure of the report  

This deliverable is structured into four sections, covering the collection and evaluation of future 

weather data from international databases, the bias correction of the datasets, and the generation of 

input data for building simulation and for the input to generators for incorporating the Urban Heat 

Island effect. Section 1 serves as the introduction, delineating the purpose (1.1), deliverable structure 

(1.2), and partner contributions to Task 2.2 development (1.3). Section 2 describes the characteristics 

of the data files used to generate future weather conditions. Section 3 presents the methods used to 

reduce bias errors by exploiting the data measured data previously obtained and described in 

deliverable D2.1. Section 4 addresses the problem of generating the test reference years for the future, 

ready to be modified for incorporating the Urban Heat Island effect.  

1.3 Contribution of partners  

Units obtained future projections from the CORDEX database, developed a script to retrieve weather 

data relative to specified locations, the team worked on the projected weather files corresponding to 

the stations identified in deliverable 2.1 for the locations of Rome and Bari and generated the relative 

TMY files corresponding to the selected stations. Units developed a general Python code to perform 

the bias correction of data using the measured and modelled data, implementing different univariate 

and multivariate bias correction methods. POLITO focused on Turin, obtaining future projections 

from the CORDEX database, performing multivariate bias correction on model projections using R 

scripts, and producing the relevant TMY files. The unibz team took care of developing a procedure 

to integrate in current and future weather files the UHI effect as modelled with UWG by MIT. 

 COLLECTION GCM-RCM projections for the area  

Future weather projections were obtained from the CORDEX database, which provides data for 

different models and timesteps. However, it can be obtained with a time resolution of one day, three 

hours, and hourly. Hourly data was selected, avoiding the necessity of time interpolating data for the 

three-hour interval or using morphing methods with daily intervals. An additional issue is relative to 

the spatial coverage of the data. The data available refers to a wide area comprising the whole of 

Europe; therefore, projections or historical values were obtained only for the locations of interest to 

avoid unmanageable large data. For instance, the size of the files is strictly related to the interval time 

used to store the data, and in the case of hourly data, the sizes increase considerably with respect to 

the daily ones. The models selected to generate the future weather files are: GERICS_CNRM-CM5, 

designed as Model 1, and GERICS_IPSL-CM5A-MR, as Model 2. 
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Both models provide hourly data with a resolution of 0.11 degrees, corresponding to a grid of about 

12.5 km. Modelled data are provided for two periods: a historical period from 1971 to 2005 and a 

projection period from 2006 to 2100. However, the available measured data for Rome and Bari do 

not cover the historical period; therefore, only the projection period corresponding to the RCP 8.5 has 

been considered for these two locations. 

For Turin, the GERICS_M-MPI-ESM-LR model was selected, providing hourly data at a spatial 

resolution of 0.11 degrees (approximately 12.5 km), as it was closest to the median temperature of all 

climate model projections [1]. Unlike the other cities, measured data for Turin was also available for 

years before 2005; therefore, files related to the historical period were obtained as well. 

For each station location identified in Deliverable 2.1, the variables relevant to the building energy 

simulation were obtained, as reported in Table 1. 

Table 1: Variables used for the generation of future weather files 

Variable Name  unit 

Near-Surface Air Temperature tas K 

Near-Surface Specific Humidity huss kgv/kga 

Near-Surface Relative Humidity hurs % 

Near-Surface Wind Speed sfcWind m/s 

Surface Air Pressure ps Pa 

Surface Downwelling Shortwave 

Radiation 

rsds W/m2 

Eastward Near-Surface Wind uas m/s 

Northward Near-Surface Wind vas m/s 

 BIAS CORRECTION OF PROJECTIONS 

Model generated future weather files usually show a bias error if compared with the measured files; 

therefore, before generating weather data for simulations, the values were bias corrected to avoid 

unreal behaviour.  

3.1 Methodology  

Simulations from global and regional climate models (GCMs and RCMs) may differ from local 

measurements, generating a bias error that will influence the expected climatic impact [2]. The 

difference can be more evident in long term scenarios, as highlighted by [3]. To correct the bias in 

models’ outputs from simulations, available measurements for typical weather variables collected at 

the weather stations described in Deliverable 2.1 can be used. Bias correction can be applied 

singularly for each variable with a univariate bias correction method or dealing with multiple 

variables together to perform a multivariate bias correction. In this report, both approaches have been 

adopted. The univariate Bias Correction used is the Quantile Delta Mapping proposed by Cannon et 

al.  [4], while the multivariate Correction has been performed with the MBCn method [5]. 
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For both univariate and multivariate versions of the corrections, three periods can be identified. A 

historical period where both measurements and model data are present, a check period to check the 

effect of correction where both measurements and model data are present, and a future period where 

only the model is present. Figure 1 presents an example of the subdivision of periods using the data 

available for Rome. For other locations, different dates, depending on the measured data available, 

were used. 

  recorded recorded  

  2013 2019 2020 2023 2024 

Historical model Future model    

1971  2005 2006 2013 2019 2020 2023 2024 2100 

  calibration correction check correction 

Figure 1, weather data distribution between calibration, check and correction periods 

3.2 Univariate model 

A common methodology for correcting biases in future weather files follows a statistical approach. 

In this report, Delta Quantile Mapping (DQM) was used for the cities of Rome and Bari. DQM 

accounts for models’ errors, assuming that biases in historical observations will be repeated during 

the projections. An additional feature of the method is that can automatically deal with projected 

values outside the range of the historical period. To check the performance of the procedure, the 

corrected and original model values have been compared to the measurements for a common period. 

However, the short period of recorded data required the splitting of the data between a training dataset 

and a check dataset with few years. Model data usually comprises a historical period ranging from 

1971 up to 2005 and a future part from 2006 to 2100, however, the measured data from Rome and 

Bari required the use of modelled data as a historical period. 

3.3 Multivariate model 

The Multivariate Bias Correction with the N-dimensional probability density function (MBCn) 

method enhances the application of the Quantile Delta Mapping (QDM) method in a multivariate 

context. Initially, individual climate variables are corrected using the QDM method. Subsequently, 

the dependence structure among these climate variables is adjusted through an iterative reshuffling 

process. In each iteration, climate data are rotated by multiplying them with random orthogonal 

matrices. The QDM is then corrected and re-correlated using inverse random matrices. 

 

While all climate variables undergo bias correction via the MBCn method, the QDM method 

specifically corrects global solar irradiance. This is because reshuffling marginally corrected global 

solar irradiance values, as performed in the MBCn method, can disrupt the diurnal structure of global 

solar irradiance. Such disruption may result in unrealistic values not only for global solar irradiance 

but also for the direct and diffuse solar irradiance components derived from it. 

 

The calibration of the MBCn and QDM methods, along with the subsequent prediction of bias-

corrected values, was conducted separately for each month of the year to preserve month-to-month 

variability in the bias-corrected climate data. The methods assume that the current bias will remain 
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consistent in the future. In this report, the MBCn/QDM method is applied to the city of Turin. To 

evaluate the performance of the procedure, the corrected model values were compared with the 

original model values and measurements for a common period (check period). 

 Evaluation of weather data correction 

4.1 Rome  

Available weather data for Rome ranges from 2013 to 2023, so the Correction of model data cannot 

be carried out using the historical model; therefore, in the present work, the future model data for 

RCP 8.5 has been used since this model was considered the most adherent to the current situation. 

Figure 1 presents the splitting of data into a training period and a check period to test the efficiency 

of the method and the future projection. 

Table 2 reports the data of the stations from which the measured data were collected for each 

coordinate presented in the Table 1 model, or both models were obtained from the netcfd files 

downloaded from the CORDEX database. The values were extracted using the cdo tool at the 

coordinates of the stations. Only RCP 8.5 data were used, and the historical parts of the model were 

disregarded.  

Table 2: Weather stations of the Rete micrometeorological of Regione Lazio 

Station Code City Latitude Longitude height 
      

Tor Vergata AL001 Roma 41.84153 12.64792 104 

Cavaliere AL003 Roma 41.92889 12.65832 57 

Castel di Guido AL004 Roma 41.88942 12.2665 61 

Boncompagni AL007 Roma 41.9096 12.49657 72 

 

According to Figure 1, the model and measured data were split into two periods, from 2013 to 2019 

and from 2020 to 2023. The first period was used to train model data through the measurements 

available from the same period, and then the second, the test period, was used to evaluate the effect 

of the Correction on different data. For the test period, the monthly average for a generic parameter 

has been computed for the observed subscript “o”, model, subscript “m”, and corrected subscript “q”, 

values. Then, the RMS error of monthly values was computed using the model and corrected values 

using Eq. 1, where the subscript “j” can be “m” for the model and “q” for corrected values. 

 

𝑅𝑀𝑆𝑗 =
√∑ (𝑣𝑜 − 𝑣𝑗)

2𝑛𝑚
𝑘

𝑛
 (1) 

Table 3 reports the obtained values for temperature, relative humidity, and global radiation. The 

Correction reduces the bias error for every model and variable; however, the reduced number of years 

of measured data does not allow for a large correction of the files.  
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Table 3: RMS for different variables and models. Station AL001 

 GERICS_CNRM-CM5 GERICS_IPSL-CM5A-MR 

RMS tas hurs rsds tas hurs rsds 

no correction 2.527 9.888 25.27 2.056 12.46 27.98 

correction 1.864 8.714 21.25 1.831 7.873 24.74 

 

 

  

 

 

 

Figure 2: mean monthly values of parameters, left model 1, right model 2 

 

Figure 2 presents the comparison between mean monthly values of temperature, humidity, and 

radiation for the two models. Quantile correction tries to match the statistical distribution of the model 

data with one of the measured ones. Figure 3 presents a qqplot for the station AL001 and temperature 

distribution for the calibration period on the left and check period on the right and Model 1, similarly, 

Figure 3 presents the same results for Model 2; analogous distributions can be obtained for other 

parameters. From both figures it appears that the quantile correction is able to correct the bias errors 

between measured data and the model since the dots representing singular values show that the 

quantile correction reduces the difference in quantile distribution, since the dots representing the 

comparison between measures and modelled data, as can be seen the dots are placed after Correction 

almost near the medium line of the plot. Figure 3 presents the comparison of measured, modelled, 

and modelled with quantile correction for the AL001 Station and temperature for Model 1, while 

Figure 4 presents the same distribution for Model 2. The efficiency of a model in replicating the 

statistical distribution of values is the density plot, which represents the probability density function 

of the variable. Figure 5 and Figure 6 show the density distribution of the temperature for the 

reference, modelled, and quantile corrected model for the training and check period of temperature 

and relative humidity for station AL001 and Model 1. Again, it is possible to identify how the quantile 

correction tries to replicate the statistical distribution of the reference data. 
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Figure 3: quantile-quantile distribution for the training period, left and test period right for model 1 
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Figure 4: quantile-quantile distribution for the training period, left and test period right for model 2 

  

Figure 5: density plot for temperature, training period left and check period right 
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Figure 6: density plot for relative humidity, training period left and check period right 

4.2 Bari 

The same approach for Rome was followed for Bari. Table 4 reports the RMS errors obtained for 

temperature, relative humidity and global radiation. However, the small number of years of measured 

data did not allow a large correction of the data, especially for relative humidity, in this case Model 

2 performed better than Model 1 

Table 4: RMS for different variables and models. Station Bari Corso Trieste 

 GERICS_CNRM-CM5 GERICS_IPSL-CM5A-MR 

RMS tas hurs rsds tas hurs rsds 
no correction 2.224 6.193 24.707 2.052 8.536 23.47 

correction 1.739 7.761 21.613 1.914 7.877 18.94 

4.3 Turin  

For Turin, the data from the “Bauducchi” station, from which the measured data were collected, were 

obtained from the NetCDF files downloaded from the CORDEX database for the selected model 

(GERICS_MPI-M-MPI-ESM-LR). The station coordinates are latitude 44.96° N, longitude 7.70° E, 

and height 226 m. A Python script was used to extract the nearest point to these coordinates and 

assemble the various weather variables and years into a single dataset. 

 

Two sets of measured data were collected from the “Bauducchi” station: one from 1994 to 2003 (the 

training period) for performing bias correction using historical models, and another from 2014 to 

2023 (the check period) to test the efficiency of the method and assess future projections. 

 

In the first step of evaluating the weather data correction, the same procedure for calculating the RMS 

Error of monthly values (Eq. 1) was applied, and the results are presented in Table 5 for temperature, 

relative humidity, global irradiation, and wind speed. Similar to the findings in Rome, the correction 

effectively reduces the bias error for all variables. 

 

The next step involves comparing the probability density functions (PDFs) of temperature, wind 

speed, and relative humidity from observations (grey), the raw model (blue), and the bias-corrected 

model (red) for both the training and check periods. Figures 7, 8, and 9 illustrate that the PDFs of the 

raw model are closely aligned with the observed data during the training period. For the check period, 
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the bias-correction procedure effectively adjusts the PDFs of the raw model to more closely mimic 

those of the observations. This adjustment holds true not only for temperature but also for more 

complex variables such as wind speed, underscoring the effectiveness of the bias correction step in 

producing realistic estimates across a range of climate variables. 

Table 5: RMS for different variables. Bauducchi Station  

 GERICS_MPI-M-MPI-ESM-LR 

RMS tas hurs rsds sfcWind 

no correction 0.748 12.684 26.73 0.519 

correction 0.624 6.337 20.89 0.089 

 

Further validation of this effectiveness is provided by the comparison of mean monthly values for 

temperature, humidity, global solar irradiation, and wind speed, as presented in Figure 10. The results 

indicate that the bias-corrected model not only enhances individual variables but also maintains their 

interrelationships, thereby ensuring a more accurate representation of the underlying climatic 

conditions. 

  

Figure 7: density plot for temperature, Bauducchi Station, training period left and check period right 

  

Figure 8: density plot for relative humidity, Bauducchi Station, training period left and check period right 



 

Pag. 15 

 

  

Figure 9: density plot for wind speed, Bauducchi Station, training period left and check period right 

 

 

  

Figure 10: mean monthly values of parameters for Bauducchi Station-2014-2023 
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 Generation of future reference years 

The input files for simulations have been generated following the UNI-EN-ISO 15927–4 standard. 

The files were created for the present period and the future as well. For the future, three periods were 

considered: a present weather file computed using the corrected modeled data, but with reference to 

the dates of historical measured data available for each station, a mid-term future file 2081-2100, and 

a long term one 2076-2010 using the quantile corrected projections previously obtained. Heating and 

Cooling degree days using a base temperature of 18 °C were used to synthetically describe the 

characteristics of the generated TMYs as reported in the following tables. 

5.1 Rome 

The quantile corrected future files can be used to generate future TMY using the standard 

methodologies. This is possible since future weather data is on an hourly basis. Other models present 

only daily future weather data; therefore, to generate future TMY, a morphing method (Manzan et 

al., 2024) should be used. For each station and model, three files are generated for three different 

periods. A historical one from 2013 to 2023, a middle future period from 2041 to 2061, and a long 

term period file 2081 to 2100. Table 6 reports the heating and cooling days for the generated files: 

Table 6: Heating and cooling degree days for Rome and in different periods 

  
 Station  

  
period 

Model 1 Model 2 

HDD18 
[°C·d] 

CDD18 
[°C·d] 

HDD18 
[°C·d] 

CDD18 
[°C·d] 

AL001 

2013_2023 1144 838 982 874 

2041_2060 838 961 825 1171 

2081_2100 579 1265 488 1606 

AL003 

2013_2023 1021 898 1100 943 

2041_2060 939 1042 823 1281 

2081_2100 585 1426 496 1790 

AL004 

2013_2023 886 871 1157 802 

2041_2060 823 965 749 1037 

2081_2100 561 1198 373 1438 

AL007 

2013_2023 909 934 939 1003 

2041_2060 797 1073 755 1337 

2081_2100 543 1522 435 1710 

 

Table 6 shows the general behaviour of the generated file. First, as a general rule, heating degree days 

decrease when considering future generated simulation data; instead, cooling degree days increase at 

the same time. This highlights a general trend due to climate change. An additional observation is 

that Model 2 presents a scenario more affected by climate change. This behaviour is also confirmed 

by the inspection of Figure 11, which presents the daily mean distribution of temperature for the 

reference periods. The temperature increases between the vase value of 2013-2023 to the future 

periods of 2041-2060 and 2081 2100, and the temperatures generated using Model 2 are higher than 

the ones of Model 1.  
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Figure 11: mean daily temperatures for station AL001 for different future periods, a) with model 1 b) with model 2 

 

5.2 Bari 

The same approach was followed for Bari, in this case, with the values of the weather station of Corso 

Trieste. Future weather files show the increase of temperatures in the short and long term, as can be 

inferred from the values of heating and cooling days reported in Table 7. Figure 12 presents the mean 

daily temperatures with the two models, and the increase of mean temperatures in future periods is 

again visible. The results of Bari show, as noticed with Rome, that model 2 provides temperature 

values higher than the ones obtained with model 1. 

 

Table 7: Heating and cooling degree days for Bari and in different periods 

  
 Station  

  
period 

Model 1 Model 2 

HDD18 
[°C·d] 

CDD18 
[°C·d] 

HDD18 
[°C·d] 

CDD18 
[°C·d] 

AL001 

2013_2023 759 947 717 1102 

2041_2060 582 1178 500 1365 

2081_2100 387 1516 291 1861 

 

  

Figure 12: mean daily temperatures for Bari for different future periods, a) with model 1 b) with model 2 
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5.3 Turin  

The same method for creating reference years was applied to Turin. Future weather files indicate a 

temperature increase in both the short and long term, as reflected in the heating and cooling days 

presented in Table 8. Figure 13 illustrates mean daily temperatures, further emphasizing the rise in 

mean temperatures in future periods, particularly for the long-term future. 

 

Table 8: Heating and cooling degree days for Turin in different periods 

  
 Station 

  
period 

GERICS_MPI-M-MPI-ESM-LR 

HDD18 [°C·d] CDD18 [°C·d] 

Bauducchi  

2013_2023 2143 550 

2041_2060 1918 720 

2081_2100 1518 1120 

 

 

Figure 13: mean daily temperatures for Turin for different future periods 

 

 IMPLEMENTING UHI EFFECT 

The UWG was used as a tool to model and account for the Urban Heat Island effect in weather data. 

A dedicated procedure was developed by the Free University of Bolzano to select representative 

urban blocks and perform for those a detailed modelling with the UWG by the MIT. The results were 

used to develop statistical correlations based on the urban morphology to quantify in a simple way 

the impact of the UHI effect. Such correlations were later tested and validated with an additional set 

of urban blocks, different from those selected for the generation of the statistical correlations, in order 

to assess their robustness and representativeness. Once the correlations proved to be sufficiently 

representative, they were used for a quick and effective visual representation of the UHI for the entire 

city under consideration. The proposed approach, combining detailed modelling with the UWG, 

statistical analyses and GIS mapping, is described in Figure 14. 

An application for Turin was presented in the framework of the conference Building Simulation 

Applications BSA 2024, which took place in Bolzano, June 26th – 28th 2024 (Borelli G., Ballarini I., 

Corrado V., Gasparella A., Pernigotto G. 2024. “Assessment and mapping of the urban heat island 
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effect: a preliminary analysis on the impact on urban morphology for the city of Turin, Italy”). In the 

case of Turin, 170 urban blocks were used for training the statistical correlations and 20 for their test. 

As it can be seen in Figure 15, the impact of UHI can be significant with respect to the rural weather 

data (Torino Bauducchi), with deviations of HDD18 ranging from slightly more than 450 K d to about 

300 K d, respectively for current and future scenarios. Likewise, the deviations for CDD18 can range 

from the current 200 K d to more than 300 K d in the future. 

 

Figure 14: Proposed procedure for the inclusion of UHI effects in current and future weather files 

 
 

 
 

Figure 15: Impact of UHI effects on Turin for current and future weather files, respectively in terms of variation for the HDD18 (top) 

and CDD18 (bottom) 
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Finally, the proposed approach allowed to explore the variability of the UHI effect within the different 

areas of the city, allowing for an easier identification of districts to prioritize in the next work 

packages. 

 
 

 

Figure 16: Impact of UHI effects in Turin for the current climate scenario (2010), respectively in terms of variation for the HDD18 

(left) and CDD18 (right) 

 CONCLUSIONS 

In this research, the availability of data obtained from GCM-RCM projections was exploited to obtain 

weather files describing the future behaviour of climate. This is an important feature to design 

buildings that will be used in future periods, but it is also important to analyse urban areas, since they 

will be particularly affected by climatic change due to the anthropic impact. However, as shown in 

this report, some steps are mandatory prior to implement models capable to project data up to year 

2100. First, the data from models must be treated and bias corrected before they can be used; in 

literature, there are different bias correction methods, so different approaches are available. 

Therefore, it is crucial to assert how the bias correction modifies the original model data. For this 

step, a check period different from the one used to train the bias correction, but with measured and 

modelled data, must be identified and the relative measured and model data compared using 

appropriate metrics. The data obtained from methods come from numerical simulations and, 

therefore, it is affected by intrinsic uncertainties; for this, it is desirable to use different models so to 

be able to incorporate the uncertainty into results. An additional issue is the time resolution of the 

modelled data. Using the available hourly data, the final generation of Typical Meteorological Years 

(TMY) was straightforward. If the modelled data had been available at different temporal resolutions, 

usually every three hours or daily, interpolation or the application of morphing methods would have 

been necessary. The outcome of the presented procedure is the generation of TMYs files ready to be 

used in building simulation or used as inputs for tools such as UWG to generate future weather files 

incorporating urban heat island effect. The results described in this report demonstrate that the now 

available future projections are an important tool for building and urban area simulations. 
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