BSA 2024

Building Simulation Applications

6th IBPSA-Italy Conference Bozen-Bolzano 26.6.2024 – 28.6.2024

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Assessment and mapping of the urban heat island effect: a preliminary analysis on the impact on urban morphology for the city of Turin, Italy

<u>Gregorio Borelli¹</u>, Ballarini Ilaria², Vincenzo Corrado², Gasparella Andrea¹ and Pernigotto Giovanni¹

¹Free University of Bozen-Bolzano, Italy ²Politecnico di Torino, Italy

Introduction

Cities and urban areas are characterized by specific microclimates and weather conditions, typically impacted by **various factors and phenomena**, such as the **Urban Heat Island (UHI)** effect, resulting in:

- ☐ Different energy needs for buildings, compared to the surrounding rural environment
- ☐ Different levels of outdoor comfort conditions, as well as indoor comfort conditions in non-conditioned built environments.

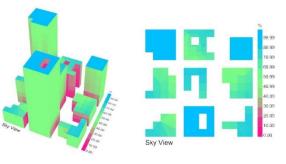
To study solutions for energy efficiency and sustainability in urban areas, an approach encompassing a larger scale (district or city-scale) is often required, with the adoption of **Urban Building Energy Modelling (UBEM)** tools.

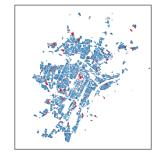
Introduction

In order to get representative findings from UBEM simulations, weather data are required to account for local microclimatic aspects. However:

- ☐ In many cases the only available weather file is developed from weather stations installed in the surrounding rural environment (e.g., airports).
- ☐ Even if an urban weather station is available, the UHI effect can show different magnitudes in the different neighbourhoods.
- ☐ The application of **tools for UHI assessment** for a whole city can be computationally demanding.

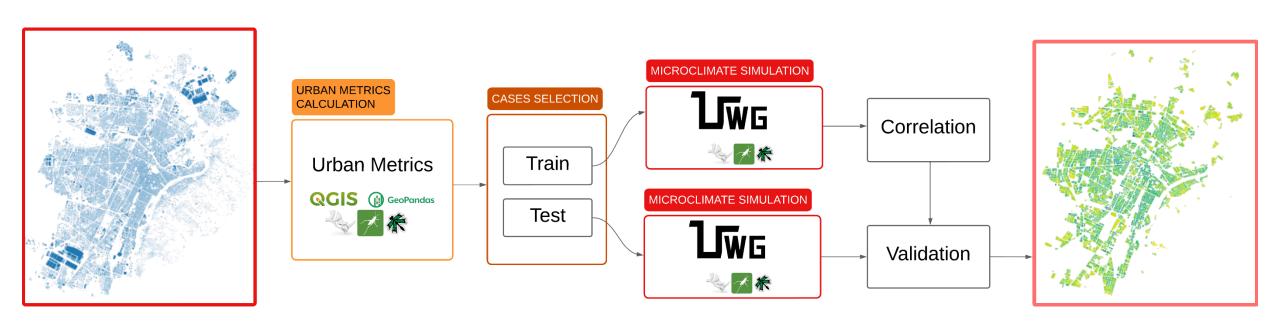
As a whole, the lack of accurate weather data can undermine the UBEM simulation accuracy.




Aims

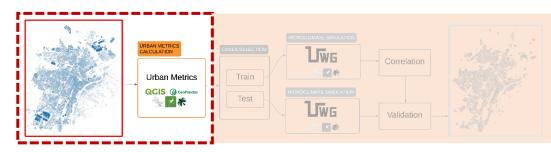
Given these premises, this work aims to show the preliminary results of a methodology proposed for identifying typical urban configurations to:

- 1. Simplify the characterization of the UHI phenomenon and its variability among the districts of a city
- 2. Developing maps to support professionals and public administrations with the assessment of the UHI phenomena and the definition of proper boundary conditions for BPS and UBEM simulations



Proposed methodology

Workflow of the proposed methodology – focus on **urban morphology**



Proposed methodology: urban metrics calculation

- 1. All buildings in the city are grouped into **urban blocks**, defined based on the parcel area to which they belong.
- 2. Urban blocks are then filtered based on number of buildings, area, and shape, excluding blocks which have no buildings, are highly irregular or are too small.
- **3. Ten urban metrics** are then calculated:
 - ☐ Floor Area Ratio (FAR)
- ☐ Surface Coverage (SC)

☐ Volume Area Ratio (VAR)

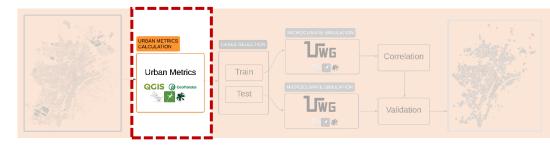
☐ Green Ratio (GR)

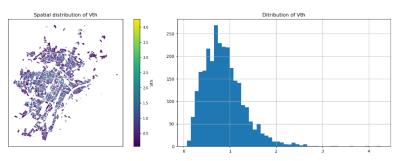
- ☐ Relative Compactness (**REC**)
- ☐ Average Building Height (ABH)

☐ Shape Factor (**SF**)

- ☐ Vertical to Horizontal Ratio (VtH)
- ☐ Average Building Distance (ABD)

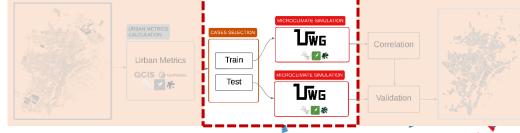
☐ Sky View Factor (**SVF**)





Proposed methodology: urban metrics calculation

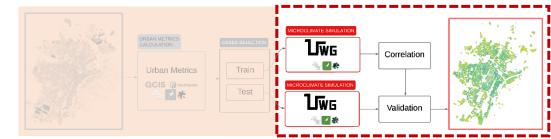
- 4. A correlation analysis is performed in order to identify those metrics highly correlated with one another.
 A subset of metrics is selected based on the correlation analysis and on the adopted tool for UHI assessment.
- 5. For the selected metrics, their **statistical distributions** are determined.
- 6. A sampling of metrics values is performed to identify cases of interests (e.g., minimum, 10^{th} percentile, Q_1 , median, Q_3 , 90^{th} percentile for each statistical distribution)

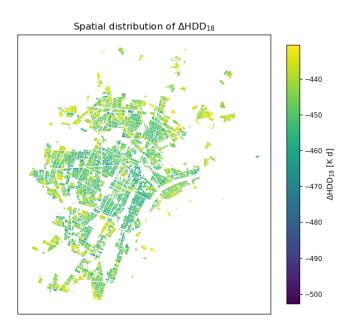




Proposed methodology: urban blocks simulation

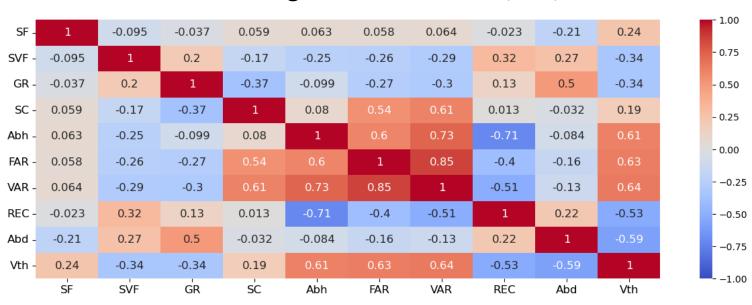
- 6. The **urban blocks** with the closest morphological features to those selected from the statistical distributions of the chosen urban metrics are identified.
- 7. Those blocks are then modelled and simulated with tools for UHI assessment (e.g., UWG by MIT) in order to generate weather data of interest (e.g., HDD_{18} or CDD_{18}).





Proposed methodology: correlations and mapping

- 8. Statistical correlations between the outputs of interest (e.g., HDD_{18} or CDD_{18}) and the urban metrics are developed.
- 9. A new set of urban blocks is randomly chosen and simulated with tools for UHI assessment, and results compared to those obtained through the generated correlations for **validation purposes**.
- 10. If validation is successful, maps for the whole city are generated.

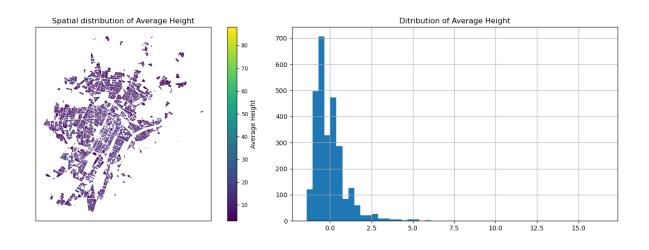


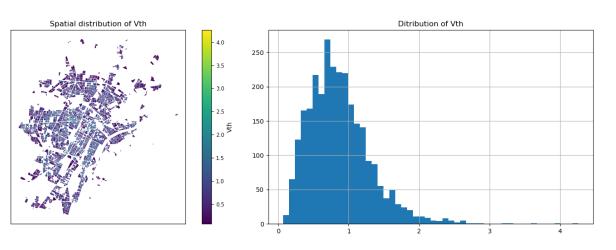
Application to the city of Turin (1)

- ☐ Identification of **2′804 urban blocks**, after filtering outliers
- Selection of the following urban metrics: SC, GR, ABH and VtH

Application to the city of Turin (2)

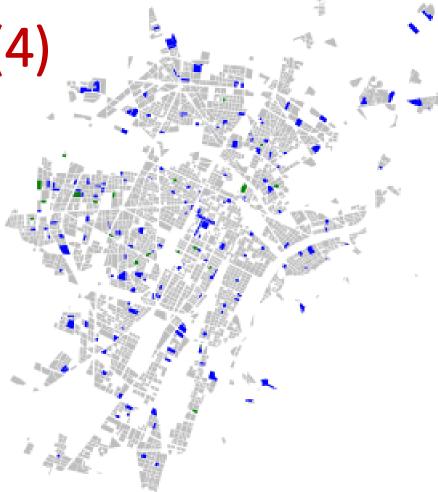
Statistical distribution o the selected urban metrics: SC, GR, ABH and VtH





Application to the city of Turin (3)

□ Statistical distribution of the selected urban metrics: SC, GR, ABH and VtH

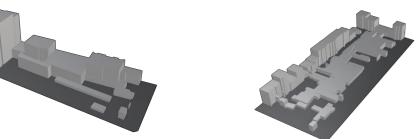


Application to the city of Turin (4)

- ☐ Selection of urban blocks for the correlation development:170 blocks (6 %)
- Selection of urban blocks for validation:20 blocks (0.7 %)

Application to the city of Turin (5)

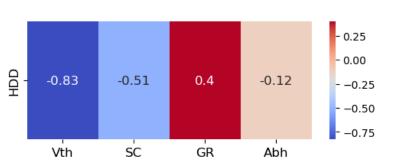
Modelling and simulation of the selected urban blocks with UWG


- Model Basis: Geometry of urban blocks
- ☐ Vegetation Parameters: Defined using Green Ratio (GR) information
- ☐ Other Parameters (not investigated in this preliminary application): set to UWG default values according to the U.S. DOE typical values.

Metrics Used for UHI effect:

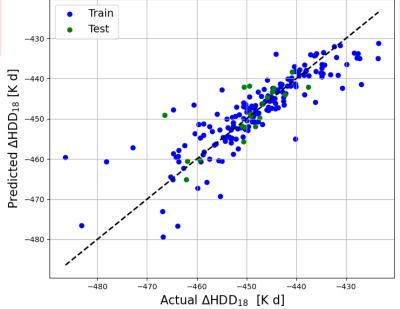
- \square Variation of Heating Degree Days (HDD₁₈)
- \square Variation of Cooling Degree Days (CDD₁₈)

Application to the city of Turin: RESULTS


A first attempt of a linear correlation carried for both the metrics.

 $\Delta HDD_{18} = -426.09 - 33.49 \cdot SC + 9.35 \cdot GR - 17.19 \cdot VtH - 0.12 \cdot ABH$

☐ Training:

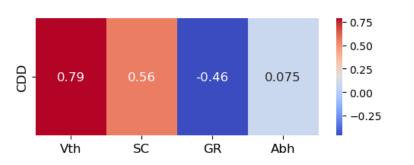

RMSE of 5.47 [K d]

R² of 0.74

☐ Test:

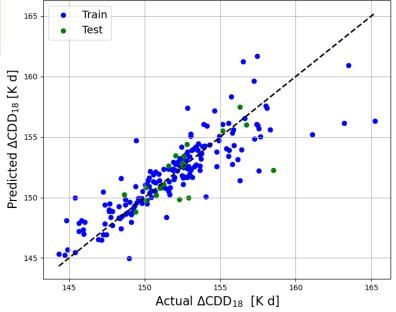
RMSE of test cases 5.13 [K d]

Application to the city of Turin: RESULTS


As first attempt of a linear correlation carried for both the metrics.

 $\Delta CDD_{18} = 145.3 + 11.51 \cdot SC - 8.06 \cdot GR + 5.29 \cdot VtH - 0.055 \cdot ABH$

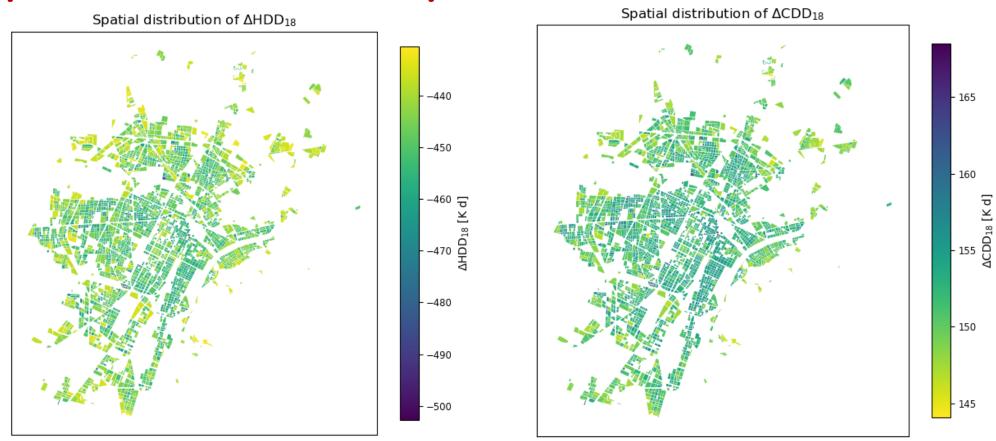
☐ Training:


RMSE of 1.89 [K d]

R² of 0.73

☐ Test:

RMSE of test cases 1.81 [K d]



Application to the city of Turin: RESULTS

Conclusion

The preliminary analysis performed for Turin, allowed to conclude that:

- ☐ There is a clear correlation between UHI effect and urban context.
- ☐ The average variation with respect to the rural weather condition is significant:
 - ΔHDD₁₈: -450 K d (-14 %)
 - ΔCDD₁₈: 152 K d (+75 %)
- ☐ A certain degree of variability of the phenomenon can be observed inside the city:
 - Spread of ΔHDD₁₈: **72 K d (2.3 %)**
 - Spread of ΔCDD₁₈: **24.4 K d (12 %)**

Conclusion

The preliminary proposed workflow allows to:

- ☐ Map the urban climate starting from the urban metrics
- ☐ Reduce the **computational time**

It can be:

- ☐ Easily applied to **other cases and metrics**
- ☐ Integrated with other techniques to obtain microclimate data

Limitation and future steps

Main limitations of this study:

- ☐ So far, the focus was put primarily on urban morphological aspects
- ☐ The adopted tool, UWG, does not account for wind speed variation, a critical variable in the Urban Heat Island (UHI) effect

Future steps:

- ☐ Integrate other parameters, such as building archetypes and anthropic heat generation
- Employ more sophisticated algorithms to better correlate the phenomena
- Conduct real-case validations

BSA 2024

Building Simulation Applications

6th IBPSA-Italy Conference Bozen-Bolzano 26.6.2024 – 28.6.2024

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Assessment and mapping of the urban heat island effect: a preliminary analysis on the impact on urban morphology for the city of Turin, Italy

Questions and Comments

<u>Gregorio Borelli¹</u>, Ballarini Ilaria², Vincenzo Corrado², Gasparella Andrea¹ and Pernigotto Giovanni¹

¹Free University of Bozen-Bolzano, Italy ²Politecnico di Torino, Italy

This study has been developed in the framework of the PhD Research Scholarship "Development of urban building energy models to support the definition of energy policies by municipalities and local public administrations" (DM 118/2023) and of the «Climate Resilient Strategies by Archetype-based Urban Energy Modelling (CRiStAll)» project – funded by European Union – Next Generation EU within the PRIN 2022 PNRR program (D.D.1409 del 14/09/2022 Ministero dell'Università e della Ricerca), M4C2, I 1.1.

